免职声明:本网站为公益性网站,部分信息来自网络,如果涉及贵网站的知识产权,请及时反馈,我们承诺第一时间删除!
This website is a public welfare website, part of the information from the Internet, if it involves the intellectual property rights of your website, please timely feedback, we promise to delete the first time.
电话Tel: 19550540085: QQ号: 929496072 or 邮箱Email: Lng@vip.qq.com
摘要:1 概述 Σ-Δ调制是目前国际上的A/D转换器设计中很受欢迎的一种技术,与传统的Nyquist频率采样的A/D转换器工作原理有所不同,采用的是过采样和低位量化结合的方法。其中,过采样技术在模/数混合电路中的应用,能够避免传统A/D或D/A转换方法实现中遇到的诸多困难,尤..
1 概述
Σ-Δ调制是目前国际上的A/D转换器设计中很受欢迎的一种技术,与传统的Nyquist频率采样的A/D转换器工作原理有所不同,采用的是过采样和低位量化结合的方法。其中,过采样技术在模/数混合电路中的应用,能够避免传统A/D或D/A转换方法实现中遇到的诸多困难,尤其是在对低频信号要求高分辨率的应用领域,传统转换方法需要较高精度的模拟结构(模拟电阻、电容等),从而使整个A/D转换器的成本很高。Σ-ΔADC能够避免使用高精度模拟电路,将噪声推向高频,具有分辨率高,量化结构简单等优点。由于电磁环境日益恶化,对接收机的动态范围要求越来越高,跳频、扩频等宽带信号的应用又要求使用宽带测量设备,这些都对ADC的分辨率和速度提出了更高的要求。 调制器(Modulator)属于Σ-ΔADC电路中的模拟电路部分,它的结构选择和电路参数设计都极大地影响着整个ADC的信噪比(SNR)等性能指标。在Σ-Δ调制器中,使用了过采样、噪声成形等关键技术。这些技术还使它另外具有一系列固有的优点,如易于与数字信号处理系统单片集成,无须采样保持电路,对输入端抗混迭滤波器要求很低等。下 2 基本原理与技术 2.1 Σ-ΔADC基本原理及调制器的组成 Σ-ΔADC由两部分组成:调制器和数字抽取滤波器。其中调制器的工作原理是采用远远大于Nyquist频率的时钟对输入模拟信号进行”过采样”,采样频率与Nyquist频率之比定义为过采样率M,是调制器的重要结构参数之一。由于采样频率很高,则无需传统的PCMADC中的保持电路。采样后的信号与前一时刻的采样信号相比较,对其差值做出低位量化,输出低位码流,并根据量化器的输出决定返回+Δ或-Δ反馈信号。调制器的基本结构如图1所示,主要由采样环节、积分器、量化器以及D/A反馈组成,其中fs表示采样时钟频率,K1,K2分别表示输入信号和反馈信号的增益系数。 图1 Σ-Δ调制器基本结构 习惯上,定义调制器中含有的积分器个数为调制器的阶数L,量化器的个数为级数。对调制器的线性模型做离散域的z变换分析,并将量化误差模型化为噪声信号,可以推导出输出信号Y对输入信号X与量化误差E的传递函数,在有效信号频率内,输入信号保持不变而噪声信号被差分衰减,即 Y(z)=z-LX(z)+(1-z-1)LE(z) (1) 通常,对调制器性能评测的重要参数之一是信噪比SNR,即信号功率与噪声功率之比 (2) 这里ps为有效信号的功率,对正弦信号来说,ps=,A为幅度;pq是信号频带内总的量化噪声功率,由E(z)的传递函数在有效信号频带内积分得到 (3) 从上式可以看出,分别提高M或L都能带来SNR的提高。但当信号频率达到几十MHz以上的高频范围后,M的提高势必会受到现有工艺,以及功耗等制约。目前,更多的研究改善SNR的方法是针对L的提高。 从调制器内在稳定性考虑,针对高阶调制器(L≥3),又有两种结构上的取向,即单级single-loop结构和多级级联的MASH结构。 2.2 过采样及MASH(多级噪声成形)技术 本文中使用记号fN来表示Nyquist调制器工作时的采样率,而它与基带信号最高频率fB的关系工程上一般为fN≈2.2fB~2.5fB。所谓过采样,就是指采样速度fs远大于fN。这里称M=fs/fN为“过采样比”。在Σ-ΔADC的设计中,M远大于1,且取为2的整数次幂(如32、64等)。过采样带来的好处为压缩基带内量化噪声,降低对输入端模拟滤波器的要求等。 但是,光凭过采样来压缩基带内噪声是低效率的,提高4倍采样率才相当于提高1bit分辨率。为了更有效地衰减基带内量化噪声,应在过采样条件下进一步加入噪声成形(noise shaping)技术。最基本的一阶噪声成形器即所谓的一阶Σ-Δ调制器,其原理此处不再讨论。这里只指出,它可被转化为如图2所示的离散时间等效模型。 图2 一阶Σ-Δ调制器离散时间等效模型 图2中的积分器用I(z)=(1-z-1)-1等效描述,而1bit ADC被加性噪声源q(n)替代。嵌在反馈环路中的1bit DAC被一个单位时延z-1取代,以避免在离散时间模型中出现无时延反馈环。q(n)是与输入信号无关的白噪声,用它能够方便地描述Σ-Δ调制器在大量信号作用下的平均行为,分析可得其输入、输出关系式为 Y(z)=X(z)+(1-z-1)Q(z) (4) 由上式可知,在信号频谱X(z)未变的同时,白噪声Q(z)被(1-z-1)加权而成为“高通”形状。此现象正是所谓“噪声成形”。加权函数(1-e-j2πfT)的零点f=0使得基带内噪声被大大压缩;而在带外的高频端,噪声却略有上升。 在实际应用中,为更有效地压低量化噪声达到分辨率要求,还得考虑高阶噪声成形。一般地,将L个一阶Σ-Δ调制器组合起来,可以实现(1-z-1)L(L阶噪声成形)。 标准的MASH(Multistage Noise Shaping,多级噪声成形)结构如图3。它实际上是L个一阶Σ-Δ调制器的串联,其中前一级调制器内的1bit ADC的量化误差被送入下一级进行再量化,然后将各级的输出码流送入运算节点进行处理。最后输出了经(1-z-1)L成形处理后的低分辨率码流。显然,这样的前馈结构不会存在任何稳定方面的问题。 图3 MASH结构框图 MASH中的数字处理节点所做的工作是抵消各级的量化误差: 第一级:Y1(z)=X(z)+(1-z-1)Q1(z),将-Q1(z)送入第2级,有Y2(z)=-Q1(z)+(1-z-1)Q2(z),再将-Q2(z)送入第3级,有Y3(z)=-Q2(z)+(1-z-1)Q3(z),..直至YL(z)=-QL-1(z)+(1-z-1)QL(z),而运算节点使得 Y(z)=Y1(z)+(1-z-1)Y2(z)+...+(1-z-1)L-1YL(z)=X(z)+(1-z-1)LQL(z) (5) 这样,就等效实现了(1-z-1)L噪声成形。除MASH外,还有许多新颖的采用计算机辅助设计的Σ-Δ噪声成形方案,用其可实现更高效的噪声成形。 3 一种DAC非线性误差校正方法 在MASHΣ-ΔADC中,与一位(1bit)量化相比,采用多位量化器具有增大信噪比(SNR),增加稳定性以及降低运算放大器规 3.1 校正系统 以二阶Σ-Δ调制器(DS1)为例来说明给出的校正技术。如图4所示,内部DAC有两个输出:v1和vT,分别输入到循环滤波和校准ADC(DS2)。由校准ADC得到^eD,即所有输出电平的DAC误差eD的数字估计,并且其被存储在RAM中。在转换时,通过FIR滤波器NLF(z)过滤RAM的输出,从而校正内部DAC误差,并从DS1的数字输出d1中减去过滤输出结果。获得^eD的过程和系统的详细分析在以下内容中给出。 图4 带有误差校正的Σ-Δ调制器 在图4所示系统中,假设单独DAC输出为两个积分器提供反馈信号。系数b1、b2的不匹配对系统线性没有影响。值得注意的是,系统没有对内部ADC的非线性误差进行校正。这些误差被与量化噪声同样的噪声传输函数所抑制,其很少作为问题提出。当使用很低的OSR时,这样是不够的,就高线性而言,需要增加阶数或使用ADC元件失配整形。 3.2 校正方法 实际DAC输出电平误差的即时获得适应于DAC的结构。如果DAC可提供多重输入和输出,那么离线校准能够被传输到后台进程。如果那样,对于DAC的每个可能的输入,数字校准信号dT将提供阶梯波形。通过校准Σ-Δ转换器DS2,每个DAC输出电平vT被转换成数字形式d2,然后通过LPF低通滤波而消除DS2的量化误差。然后,减去dT从而补偿电平误差eD,这样,得到误差估计^eD并将其存储在RAM中,并且对每一输出d1将再次调用^eD并校正。在运行过程中,周期性地重复校准,以追踪DAC输出电平中产生的漂移。 在低过采样率(OSR)和低阶循环滤波器情况下,从DAC的输出v1到DS1的输出d1的传输函数不能由NLF(z)=-1正确地近似。为了得到精确的误差校准,如图4所示,RAM的输出需要被实际的NLF(z)(此处为-2z-1+z-2)过滤。 在一些DAC的实现中,使用了N个等价单位元件(电流源、电容、电阻等)。如果在DAC中执行N+1个元件,可使用上述算法,利用DS2逐个顺序地测量它们的误差。换句话说,输出信号d1与校准信号dT一样可被使用。利用n个单位元件通过调用d1值从而产生v1,剩余的N-n个单位元件被用来产生vT。如果DAC增益和偏移误差是可以被接受的,为了使所有单位元件误差总和可取零,那么vT中的误差是v1中误差的负数。因此,通过将vT中的模拟采样分类进入通道,使用其中一个通道专用于每个可能输入(d1)码和其补码,DS2可用来以数字形式产生单独DAC电平。由于为每一DAC电平复制存储元件(反馈电容),DS2的运算可容易地在通道中多重复用。 由于线性运算,校准ADC(DS2)自身必须要有高的线性。这需要在DS2中使用1位内部量化器。但是,由于DAC非线性信息保持,线性影响(增益和偏移误差)在DS2中是可以接受的。同样,实际DAC误差传输函数(从v1至d1)和其数字复制部分NLF(z)之间的匹配误差对整个转换器的线性仅有较小的影响。 3.3 仿真结果 数字校正ADC(如图4的DS2)的运行仿真条件如下述。假设5bit(322电平)内部ADC和DAC,在DAC中有0.1%线性梯度误 采用理想DAC、非理想运放和电容,系统运行计算出的频谱如图5(a)所示。图5(b)给出了使用误差校准的非线性DAC得到的频谱。可以看出,产生了大的谐波,SFDR仅为52dB。当使用了本文提出的数字校正技术后,频谱结果如图5(c)所示,得到SFDR>100dB。为了得到这样高的SFDR所需要的充分精确的eD估计,DS2对DAC的每一电平进行了218采样(如果DS2时钟控制在fs=5MHz,那么后台校准完整循环需要约4秒)。最后,图5(d)说明了使用NLF(z)=-1后的有害影响,即SFDR由101dB降至60dB。 图5 MASH的输出频谱(215采样,64倍FFT,fB=fs/8,OSR=4) 5 结论 本文介绍了Σ-Δ调制器的基本原理和技术,并针对采用多位内部量化器的MASH Σ-ΔADC提出了一种即时数字校正方法。对于低过采样比的模数转换器,采用通常的失配整形技术效果不佳,但本方法可有效应用于此。通过仿真证明,使用本文提出的即时数字校正法可得到极好的线性。 |