C语言教程第五章:函数(五)
责任编辑:chineselng    浏览:41138次    时间: 2008-04-05 22:01:52      

免职声明:本网站为公益性网站,部分信息来自网络,如果涉及贵网站的知识产权,请及时反馈,我们承诺第一时间删除!

This website is a public welfare website, part of the information from the Internet, if it involves the intellectual property rights of your website, please timely feedback, we promise to delete the first time.

电话Tel: 19550540085: QQ号: 929496072 or 邮箱Email: Lng@vip.qq.com

摘要: 函数的递归调用  一个函数在它的函数体内调用它自身称为递归调用。 这种函数称为递归函数。C语言允许函数的递归调用。在递归调用中, 主调函数又是被调函数。执行递归函数将反复调用其自身。 每调用一次就进入新的一层。例如有函数f如下:int f (int x){int y;z=..

分享到:

函数的递归调用

  一个函数在它的函数体内调用它自身称为递归调用。 这种函数称为递归函数。C语言允许函数的递归调用。在递归调用中, 主调函数又是被调函数。执行递归函数将反复调用其自身。 每调用一次就进入新的一层。例如有函数f如下:
int f (int x)
{
int y;
z=f(y);
return z;
}
  这个函数是一个递归函数。 但是运行该函数将无休止地调用其自身,这当然是不正确的。为了防止递归调用无终止地进行, 必须在函数内有终止递归调用的手段。常用的办法是加条件判断, 满足某种条件后就不再作递归调用,然后逐层返回。 下面举例说明递归调用的执行过程。
[例5.9]用递归法计算n!用递归法计算n!可用下述公式表示:
n!=1 (n=0,1)
n×(n-1)! (n>1)
按公式可编程如下:
long ff(int n)
{
long f;
if(n<0) printf("n<0,input error");
else if(n==0||n==1) f=1;
else f=ff(n-1)*n;
return(f);
}
main()
{
int n;
long y;
printf("\ninput a inteager number:\n");
scanf("%d",&n);
y=ff(n);
printf("%d!=%ld",n,y);
}
long ff(int n)
{ ……
else f=ff(n-1)*n;
……
}
main()
{ ……
y=ff(n);
……
}

  程序中给出的函数ff是一个递归函数。主函数调用ff 后即进入函数ff执行,如果n<0,n==0或n=1时都将结束函数的执行,否则就递归调用ff函数自身。由于每次递归调用的实参为n-1,即把n-1 的值赋予形参n,最后当n-1的值为1时再作递归调用,形参n的值也为1,将使递归终止。然后可逐层退回。下面我们再举例说明该过程。 设执行本程序时输入为5, 即求 5!。在主函数中的调用语句即为y=ff(5),进入ff函数后,由于n=5,不等于0或1,故应执行f=ff(n-1)*n,即f=ff(5-1)*5。该语句对ff作递归调用即ff(4)。 逐次递归展开如图5.3所示。进行四次递归调用后,ff函数形参取得的值变为1,故不再继续递归调用而开始逐层返回主调函数。ff(1)的函数返回值为1,ff(2)的返回值为1*2=2,ff(3)的返回值为2*3=6,ff(4) 的返
回值为6*4=24,最后返回值ff(5)为24*5=120。

  例5. 9也可以不用递归的方法来完成。如可以用递推法,即从1开始乘以2,再乘以3…直到n。递推法比递归法更容易理解和实现。但是有些问题则只能用递归算法才能实现。典型的问题是Hanoi塔问题。
  
  [例5.10]Hanoi塔问题
一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘, 大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。
本题算法分析如下,设A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),
步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上,见图5.5(b)。
(2)将A上的一个圆盘移到B,见图5.5(c)
(3)将C上的n`-1(等于1)个圆盘移到B,见图5.5(d)
B. 将A上的一个圆盘移到C,见图5.5(e)
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),
步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A,见图5.5(f)
(2)将B上的一个盘子移到C,见图5.5(g)
(3)将A上的n`-1(等于1)个圆盘移到C,见图5.5(h)。
到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时, 移动的过程可分解为
三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过
程,据此算法可编程如下:
move(int n,int x,int y,int z)
{
if(n==1)
printf("%c-->%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c-->%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{
int h;
printf("\ninput number:\n");
scanf("%d",&h);
printf("the step to moving %2d diskes:\n",h);
move(h,'a','b','c');
}
move(int n,int x,int y,int z)
{
if(n==1)
printf("%-->%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c-->%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{ ……
move(h,'a','b','c');
}
  从程序中可以看出,move函数是一个递归函数,它有四个形参n,x,y,z。n表示圆盘数,x,y,z分别表示三根针。move 函数的功能是把x上的n个圆盘移动到z 上。当n==1时,直接把x上的圆盘移至z上,输出x→z。如n!=1则分为三步:递归调用move函数,把n-1个圆盘从x移到y;输出x→z;递归调用move函数,把n-1个圆盘从y移到z。在递归调用过程中n=n-1,故n的值逐次递减,最后n=1时,终止递归,逐层返回。当n=4 时程序运行的结果为
input number:
4
the step to moving 4 diskes:
a→b
a→c
b→c
a→b
c→a
c→b
a→b
a→c
b→c
b→a
c→a
b→c
a→b
a→c
b→c


变量的作用域

  在讨论函数的形参变量时曾经提到, 形参变量只在被调用期间才分配内存单元,调用结束立即释放。 这一点表明形参变量只有在函数内才是有效的, 离开该函数就不能再使用了。这种变量有效性的范围称变量的作用域。不仅对于形参变量, C语言中所有的量都有自己的作用域。变量说明的方式不同,其作用域也不同。 C语言中的变量,按作用域范围可分为两种, 即局部变量和全局变量。

】【打印繁体】【投稿】 【收藏】 【推荐】 【举报】 【评论】 【关闭】【返回顶部